DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY LUCKNOW

Evaluation Scheme & Syllabus

For

B.Tech. 4th Year

Computer Science and Engineering

(Data Science)

(Effective from the Session: 2023-24)

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY LUCKNOW

B.TECH 4th Year

COMPUTER SCIENCE AND ENGINEERING

(DATA SCIENCE)

		SEN	MEST	ER-	- VII								
SI. No.	Subject	Subject	Р	Periods		Evaluation Schem			eme	ne End Semester		Total	Credit
INU.	Codes	_	L	T	P	СТ	TA	Total	PS	TE	PE		
1	KHU701/KHU702	HSMC -1 / HSMC-2	3	0	0	30	20	50		100		150	3
2	Departmental Elective-IV	Departmental Elective-IV	3	0	0	30	20	50		100		150	3
3	Departmental Elective-V	Departmental Elective-V	3	0	0	30	20	50		100		150	3
4	KOE07X	Open Elective-II	3	0	0	30	20	50		100		150	3
5	KCS751A	Departmental Elective Lab**	0	0	2				25		25	50	1
6	KCS752	Mini Project or Internship Assessment*	0	0	2				50			50	1
7	KCS753	Project	0	0	8				150			150	4
8		MOOCs (Essential for Hons. Degree)					<u> </u>		1	1	1		
		Total	12	0	12							850	18
*The	Mini Project or internsh	ip (4 - 6 weeks) conducted during su	mmer	breal	c after	VI se	mester	and will	be asse	essed d	uring V	II semest	er.
**De	partment may conduct o	ne Lab of based on either Data Mini	-			•	Cloud	Computi	ng.				
		SEN	AEST	ER-	VIII	[
SI. No.	Subject	Subject	P	PeriodsEvaluation SchemeEnd Semester		Perio			Total	Credit			
110.	Codes		L	T	P	СТ	TA	Total	PS	ТЕ	PE		
1	KHU801/KHU802	HSMC-2 [#] /HSMC-1 [#]	3	0	0	30	20	50		100		150	3
2	KOE08X	Open Elective-III	3	0	0	30	20	50		100		150	3
3	KOE09X	Open Elective-IV	3	0	0	30	20	50		100		150	3
4	KCS 851	Project	0	0	18				100		300	400	9
5		MOOCs (Essential for Hons. Degree)		1	1	1	I	1	1	1	1		
		Total	9	0	18							850	18

Departmental Elective-IV

- 1. KDS071 Artificial Intelligence
- 2. KCS072 Natural language processing
- 3. KDS073 Text Analytics
- 4. KCS074 Cryptography and Network Security
- 5. KAI075 Data Warehousing and Data Mining
- 6. KAI076 Time series analysis and Forecasting
- 7. KDS077 Nature-Inspired Computing

Departmental Elective-V

- 1. KDS078 Deep Learning
- 2. KDS079 Service Oriented Architecture
- 3. KCS710 Quantum Computing
- 4. KCS711 Mobile Computing
- 5. KCS712 Internet of Things
- 6. KCS713 Cloud Computing
- 7. KCS714 Blockchain Architecture Design

DR. A.P.J. ABDUL KALAM TECHNICAL UNIVERSITY LUCKNOW

B.Tech. 4th Year

Computer Science & Engineering-Data Science

	Artificial Intelligence (KDS-071)	
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)
	At the end of course , the student will be able to understand	-
CO 1	Understand the basics of the convex optimization .	K ₂
CO 2	Understand the different Gradient-based methods.	K ₂ , K ₃
CO 3	Can implement Newton's method and L-BFGS solvers for convex optimization problems,	K ₃ , K ₄
CO 4	optimization problems arising in machine learning.	K ₂ , K ₃
CO 5	Demonstrate competence with probability theory/statistics needed to formulate and solve machine learning problems.	K ₂ , K ₄
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Basics of convex optimization Convex sets, convexity-preserving operations, examples of convex programs (linear programming (LP), second-order cone programming (SOCP), semidefinite programming (SDP)), convex relaxation, KKT conditions, duality	09
П	Gradient-based methods Gradient descent, subgradient, mirror descent, Frank–Wolfe method, Nesterov's accelerated gradient method, ODE interpretations, dual methods, Nesterov's smoothing, proximal gradient methods, Moreau–Yosida regularization	09
ш	Operator splitting methods Augmented Lagrangian methods, alternating direction method of multipliers (ADMM), monotone operators, Douglas–Rachford splitting, primal and dual decomposition	09
IV	Stochastic and nonconvex optimization Dual averaging, Polyak–Juditsky averaging, stochastic variance reduced gradient (SVRG), Langevin dynamics, escaping saddle points, landscape of nonconvex problems, deep learning	09
V	Two Use Case of ML optimization Techniques	04
2. Neste 3. Neal 1 5. S'eba 6. Morit 7. Pratec 8. Linea 9. Conve	oks: en Boyd and Lieven Vandenberghe's book: Convex Optimization rov's old book: Introductory Lectures on Convex Optimization: A Basic Course Parikh and Stephen Boyd's monograph: Proximal Algorithms stien Bubeck's monograph: Convex Optimization: Algorithms and Complexity z Hardt's Berkeley EE 227C course note ek Jain and Purushottam Kar's survey on nonconvex optimization r Algebra and Learning from Data, Gilbert Strang ex Optimisation by Stephen Boyd nisation for Machine Learning by Suvrit Sra, MIT Press.	1

KCS072		
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)
	At the end of course, the student will be able :	
CO 1	To learn the fundamentals of natural language processing	K ₁ , K ₂
CO 2	To understand the use of CFG and PCFG in NLP	K ₁ , K ₂
CO 3	To understand the role of semantics of sentences and pragmatic	K ₂
CO 4	To Introduce Speech Production And Related Parameters Of Speech.	K ₁ , K ₂
CO 5	To Show The Computation And Use Of Techniques Such As Short Time Fourier Transform, Linear Predictive Coefficients And Other Coefficients In The Analysis Of Speech.	K _{3,} K ₄
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	 INTRODUCTION: Origins and challenges of NLP – Language Modeling: Grammar-based LM, Statistical LM – Regular Expressions, Finite-State Automata – English Morphology, Transducers for lexicon and rules, Tokenization, Detecting and Correcting Spelling Errors, Minimum Edit Distance WORD LEVEL ANALYSIS : Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Backoff – Word Classes, Part-of-Speech Tagging, Rule-based, Stochastic and Transformation-based tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models. 	08
Π	SYNTACTIC ANALYSIS: Context Free Grammars, Grammar rules for English, Treebanks, Normal Forms for grammar – Dependency Grammar – Syntactic Parsing, Ambiguity, Dynamic Programming parsing – Shallow parsing – Probabilistic CFG, Probabilistic CYK, Probabilistic Lexicalized CFGs – Feature structures, Unification of feature structures.	08
III	SEMANTICS AND PRAGMATICS: Requirements for representation, First-Order Logic, Description Logics – Syntax-Driven Semantic analysis, Semantic attachments – Word Senses, Relations between Senses, Thematic Roles, selectional restrictions – Word Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus, Bootstrapping methods – Word Similarity using Thesaurus and Distributional methods.	08
IV	BASIC CONCEPTS of Speech Processing : Speech Fundamentals: Articulatory Phonetics – Production And Classification Of Speech Sounds; Acoustic Phonetics – Acoustics Of Speech Production; Review Of Digital Signal Processing Concepts; Short-Time Fourier Transform, Filter-Bank And LPC Methods.	08
V	SPEECH-ANALYSIS: Features, Feature Extraction And Pattern Comparison Techniques: Speech Distortion Measures– Mathematical And Perceptual – Log–Spectral Distance, Cepstral Distances, Weighted Cepstral Distances And Filtering, Likelihood Distortions, Spectral Distortion Using A Warped Frequency Scale, LPC, PLP And MFCC Coefficients, Time Alignment And Normalization – Dynamic Time Warping, Multiple Time – Alignment Paths. SPEECH MODELING : Hidden Markov Models: Markov Processes, HMMs – Evaluation, Optimal State Sequence – Viterbi Search, Baum-Welch Parameter Re-Estimation, Implementation Issues.	08
Fext boo		
F 2. S	Daniel Jurafsky, James H. Martin—Speech and Language Processing: An Introduction to Natur Processing, Computational Linguistics and Speech, Pearson Publication, 2014. Iteven Bird, Ewan Klein and Edward Loper, —Natural Language Processing with Python, First Edit Media, 2009.	
3. L	awrence Rabiner And Biing-Hwang Juang, "Fundamentals Of Speech Recognition", Pearson Educat	tion, 2003.

- 4. Daniel Jurafsky And James H Martin, "Speech And Language Processing An Introduction To Natural Language Processing, Computational Linguistics, And Speech Recognition", Pearson Education, 2002.
- 5. Frederick Jelinek, "Statistical Methods Of Speech Recognition", MIT Press, 1997.
- 6. 1. Breck Baldwin, —Language Processing with Java and LingPipe Cookbook, Atlantic Publisher, 2015.
- 7. Richard M Reese, —Natural Language Processing with Java, OReilly Media, 2015.
- 8. Nitin Indurkhya and Fred J. Damerau, —Handbook of Natural Language Processing, Second Edition, Chapman and Hall/CRC Press, 2010.
- 9. Tanveer Siddiqui, U.S. Tiwary, —Natural Language Processing and Information Retrieval, Oxford University Press, 2008.

KDS07	3 Text Analytics	
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)
	At the end of course , the student will be able to understand	
CO 1	Engage in continuous reflective learning in the context of technology and scientific advancement.	K2
CO 2	To learn understand the use of text analytics and Processing	K2, K3
CO 3	To understand the role of Text mining modeling using NLTK	K3, K4
CO 4	To Introduce Speech Production And Related Parameters Of Speech.	K2,K3
CO 5	To Show The Computation And Use Of Techniques Such As Short Time Fourier Transform, Linear Predictive Coefficients And Other Coefficients In The Analysis Of Speech.	K2, K4
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	Introductory overview of Text Mining, Introductory Thoughts, Data Mining vs. Text Mining ,Text Mining and Text Characteristics, Predictive Text Analytics, Text Mining Problems ,Prediction & Evaluation	08
II	Text mining modeling using NLTK, Text Corpus, Sentence Tokenization, Word Tokenization, Removing special Characters, Expanding contractions, Removing Stopwords, Correcting words: repeated characters, Stemming & lemmatization, Part of Speech Tagging.	08
III	Feature Extraction, Bag of words model, TF-IDF model, Text classification problem, Building a classifier using support vector machine.	08
IV	Introduction to natural language processing (NLP) Linguistics Essentials. Foundations of text processing: tokenization, stemming, stopwords, lemmatization, part-of-speech tagging, syntactic parsing.	08
V	Word Level Analysis : Unsmoothed N-grams, Evaluating N-grams, Smoothing, Interpolation and Backoff – Word Classes, Part-of-Speech Tagging, Rule-based, Stochastic and Transformation- based tagging, Issues in PoS tagging – Hidden Markov and Maximum Entropy models.	08
Text bo		
2.	Fundamentals of Predictive Text Mining by Sholom M. Weiss, Nitin Indurkhya, & Tong Zhang (2010) Text Analytics with Python: A Practical Real-World Approach to Gaining Actionable Insights from Yo Dipanjan Sarkar (2016)	
3.	Daniel Jurafsky, James H. Martin—Speech and Language Processing: An Introduction to Natural Lang Processing, Computational Linguistics and Speech, Pearson Publication, 2014.	
	Steven Bird, Ewan Klein and Edward Loper, —Natural Language Processing with Python, First Editio Media, 2009.	
6.	Lawrence Rabiner And Biing-Hwang Juang, "Fundamentals Of Speech Recognition", Pearson Educati Daniel Jurafsky And James H Martin, "Speech And Language Processing – An Introduction To Natura Processing, Computational Linguistics, And Speech Recognition", Pearson Education, 2002. Frederick Jelinek, "Statistical Methods Of Speech Recognition", MIT Press, 1997.	
8.	Breck Baldwin, —Language Processing with Java and LingPipe Cookbook, Atlantic Publisher, 2015. Richard M Reese, —Natural Language Processing with Java, OReilly Media, 2015.	

KCS0'		
	Course Outcome (CO)Bloom's Knowledge I	Level (KL
	At the end of course , the student will be able to understand	
CO	Classify the symmetric encryption techniques and Illustrate various Public key cryptographic techniques.	K2,K3
CO	Understand security protocols for protecting data on networks and be able to digitally sign emails and files.	K1,K2
CO	Understand vulnerability assessments and the weakness of using passwords for authentication	K4
CO 4	Be able to perform simple vulnerability assessments and password audits	К3
CO S	Summarize the intrusion detection and its solutions to overcome the attacks.	K2
	DETAILED SYLLABUS	3-0-0
J nit	Торіс	Propose Lecture
I	Introduction to security attacks, services and mechanism, Classical encryption techniques- substitution ciphers and transposition ciphers, cryptanalysis, steganography, Stream and block ciphers. Modern Block Ciphers: Block ciphers principles, Shannon's theory of confusion and diffusion, fiestal structure, Data encryption standard(DES), Strength of DES, Idea of differential cryptanalysis, block cipher modes of operations, Triple DES	08
II	Introduction to group, field, finite field of the form GF(p), modular arithmetic, prime and relative prime numbers, Extended Euclidean Algorithm, Advanced Encryption Standard (AES) encryption and decryptionFermat's and Euler's theorem, Primarily testing, Chinese Remainder theorem, Discrete Logarithmic Problem, Principals of public key crypto systems, RSA algorithm, security of RSA	08
III	Message Authentication Codes: Authentication requirements, authentication functions, message authentication code, hash functions, birthday attacks, security of hash functions, Secure hash algorithm (SHA) Digital Signatures: Digital Signatures, Elgamal Digital Signature Techniques, Digital signature standards (DSS), proof of digital signature algorithm,	08
IV	Key Management and distribution: Symmetric key distribution, Diffie-Hellman Key Exchange, Public key distribution, X.509 Certificates, Public key Infrastructure. Authentication Applications: Kerberos, Electronic mail security: pretty good privacy (PGP), S/MIME.	08
V	IP Security: Architecture, Authentication header, Encapsulating security payloads, combining security associations, key management. Introduction to Secure Socket Layer, Secure electronic, transaction (SET) System Security: Introductory idea of Intrusion, Intrusion detection, Viruses and related threats, firewalls	08
Sehrou	ooks: 1. William Stallings, "Cryptography and Network Security: Principals and Practice", Pearson E z A. Frouzan: Cryptography and Network Security, Tata McGraw Hill . 3. C K Shyamala, N dmnabhan Cryptography and Security, Wiley	
	e Schiener, "Applied Cryptography". John Wiley & Sons	
	ard Menezes," Network Security and Cryptography", Cengage Learning.	
	Kahate, "Cryptography and Network Security", Tata McGraw Hill	

KAI07	5 Design Data Warehousing and Data Mining	
	Course Outcome (CO) Bloom's Knowledge l	Level (KL)
	At the end of course , the student will be able to understand	
CO	Be familiar with mathematical foundations of data mining tools	K1,K2
CO 2	Understand and implement classical models and algorithms in data warehouses and data mining	К3
CO 3	Characterize the kinds of patterns that can be discovered by association rule mining, classification and clustering.	K1,K2
CO 4	Master data mining techniques in various applications like social, scientific and environmental context.	К3
CO 5	Develop skill in selecting the appropriate data mining algorithm for solving practical problems.	K1,K2
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
Ι	Data Warehousing: Overview, Definition, Data Warehousing Components, Building a Data Warehouse, Warehouse Database, Mapping the Data Warehouse to a Multiprocessor Architecture, Difference between Database System and Data Warehouse, Multi Dimensional Data Model, Data Cubes, Stars, Snow Flakes, Fact Constellations, Concept	08
П	Data Warehouse Process and Technology: Warehousing Strategy, Warehouse /management and Support Processes, Warehouse Planning and Implementation, Hardware and Operating Systems for Data Warehousing, Client/Server Computing Model & Data Warehousing. Parallel Processors & Cluster Systems, Distributed DBMS implementations, Warehousing Software, Warehouse Schema Design,	08
III	Data Mining: Overview, Motivation, Definition & Functionalities, Data Processing, Form of Data Pre-processing, Data Cleaning: Missing Values, Noisy Data, (Binning, Clustering, Regression, Computer and Human inspection), Inconsistent Data, Data Integration and Transformation. Data Reduction:-Data Cube Aggregation, Dimensionality reduction, Data Compression, Numerosity Reduction, Discretization and Concept hierarchy generation, Decision Tree.	08
IV	Classification: Definition, Data Generalization, Analytical Characterization, Analysis of attribute relevance, Mining Class comparisons, Statistical measures in large Databases, Statistical-Based Algorithms, Distance-Based Algorithms, Decision Tree-Based Algorithms. Clustering: Introduction, Similarity and Distance Measures, Hierarchical and Partitional Algorithms. Hierarchical Clustering-CURE and Chameleon. Density Based Methods-DBSCAN, OPTICS. Grid Based Methods- STING, CLIQUE. Model Based Method –Statistical Approach, Association rules: Introduction, Large Item sets, Basic Algorithms, Parallel and Distributed Algorithms, Neural Network approach.	08
V	Data Visualization and Overall Perspective: Aggregation, Historical information, Query Facility, OLAP function and Tools. OLAP Servers, ROLAP, MOLAP, HOLAP, Data Mining interface, Security, Backup and Recovery, Tuning Data Warehouse, Testing Data Warehouse. Warehousing applications and Recent Trends: Types of Warehousing Applications, Web Mining, Spatial Mining and Temporal Mining	08
Text b		
1. 2. 3. 4. 5.	Alex Berson, Stephen J. Smith "Data Warehousing, Data-Mining & OLAP", TMH Mark Humphries, Michael W. Hawkins, Michelle C. Dy, "Data Warehousing: Architecture and Imple Pearson Margaret H. Dunham, S. Sridhar,"Data Mining:Introductory and Advanced Topics" Pearson Educatio Arun K. Pujari, "Data Mining Techniques" Universities Press Pieter Adriaans, Dolf Zantinge, "Data-Mining", Pearson Education	

KAI076	Time series analysis and Forecastin	g	
	Course Outcome (CO)	Bloom's Knowledge Lev	el (KL)
	At the end of course , the student will be a	ble to understand	
CO 1	Analyze any time series data using various statistical approaches		K2, K3
CO 2	Know basic concepts of univariate time series analysis; build app models.		K3, K4
CO 3	Know basic concepts of multivariate time series analysis; buil series models.	ld appropriate econometric time	K1,K2
CO 4	Understand limitation and relevance of the models.		K1 , K2
CO 5	Generate reasonable forecast values, and to make concise decision	ons based on forecasts obtained	K2
	DETAILED SYLLABUS		3-0-0
Unit	Торіс		Proposed Lecture
Ι	INTRODUCTION OF TIMESERIES ANALYSIS: Intr Forecasting, Different types of data, Internal structures of tim analysis, Autocorrelation and Partial autocorrelation. Examples of forecasting, Forecasting Process, Data for forecasting, Resou	ne series. Models for time series s of Time series Nature and uses	08
II	STATISTICS BACKGROUND FOR FORECASTING: C Plots, Plotting Smoothed Data, Numerical Description of T Transformations and Adjustments, General Approach to Forecasting, Evaluating and Monitoring Forecasting Model Per	Time Series Data, Use of Data Time Series Modeling and	08
ш	TIME SERIES REGRESSION MODEL: Introduction Lea Regression Models, Statistical Inference in Linear Regression, Model Adequacy Checking, Variable Selection Methods i Weighted Least Squares, Regression Models for General Smoothing, First order and Second order.	Prediction of New Observations, n Regression, Generalized and	08
IV	AUTOREGRESSIVE INTEGRATED MOVING AVER Autoregressive Moving Average (ARMA) Models – Station Models - Checking for Stationary using Variogram- Detecting Integrated Moving Average (ARIMA) Models - Forecasting using ARIMA - Se Models Forecasting using Seasonal ARIMA Models Introduct -Example: Internet Users Data Model Selection Criteria - Imputhe Differences in Models Comparing Impulse Response Funct	ary and Inevitability of ARMA Non-stationary - Autoregressive easonal Data -Seasonal ARIMA ion - Finding the "BEST" Model ulse Response Function to Study	08
V	MULTIVARIATE TIME SERIES MODELS AND FORM Series Models and Forecasting, Multivariate Stationary Pro- Vector AR (VAR) Models, Neural Networks and Forecasting Methods in Forecasting.	ocess, Vector ARIMA Models,	08
Text boo	ks:		
	ntroduction To Time Series Analysis And Forecasting, 2nd Editio ouglas C. Montgomery, Cheryl L. Jen(2015)	on, Wiley Series In Probability And	d Statistics, By
	Master Time Series Data Processing, Visualization, And Modeling	g Using Python Dr. Avishek Pal D	Dr. Pks Prakash
3. K 4. C	2017) Lendall M.G. (1976): Time Series, Charles Griffin. Thatfield C. (1980): The Analysis of Time Series –An Introduction Mukhopadhyay P. (2011): Applied Statistics, 2nd ed. Revised repri	· · · · ·	

KDS077	7 Nature-Inspired Computing	
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)
	At the end of course , the student will be able :	1
CO 1	The basics of Natural systems	K_1, K_2
CO 2	The concepts of Natural systems and its applications	K_1, K_2
CO 3	Basic Natural systems functions(operations)	K ₂
CO 4	Natural design considerations.	K_2, K_3
CO 5	Integration of Hardware and software in Natural applications.	K ₃ , K ₆
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
Ι	INTRODUCTION: From Nature to Nature Computing , Philosophy , Three Branches: A Brief Overview, Individuals, Entities and agents - Parallelism and Distributivity Interactivity ,Adaptation Feedback-Self-Organization-Complexity, Emergence and ,Bottom-up Vs Top-Down- Determination, Chaos and Fractals	08
Π	Computing Inspired by Nature: Evolutionary Computing, Hill Climbing and Simulated Annealing, Darwin's Dangerous Idea, Genetics Principles, Standard Evolutionary Algorithm –Genetic Algorithms , Reproduction-Crossover, Mutation, Evolutionary Programming, Genetic Programming	08
III	SWARM INTELLIGENCE: Introduction - Ant Colonies, Ant Foraging Behavior, Ant Colony Optimization, SACO and scope of ACO algorithms, Ant Colony Algorithm (ACA), Swarm Robotics, Foraging for food, Social Adaptation of Knowledge, Particle Swarm Optimization (PSO)	08
IV	IMMUNOCOMPUTING: Introduction- Immune System, Physiology and main components, Pattern Recognition and Binding, Immune Network Theory- Danger Theory, Evaluation Interaction-Immune Algorithms, Introduction – Genetic algorithms, Bone Marrow Models, Forest's Algorithm, Artificial Immune Networks	08
V	COMPUTING WITH NEW NATURAL MATERIALS: DNA Computing: Motivation, DNA Molecule , Adleman's experiment , Test tube programming language, Universal DNA Computers , PAM Model , Splicing Systems , Lipton's Solution to SAT Problem , Scope of DNA Computing , From Classical o DNA Computing	08
Text boo	ks:	1
1. Leand	ro Nunes de Castro, " Fundamentals of Natural Computing, Basic Concepts, Algorithms and	
2. Applic	ations", Chapman & Hall/ CRC, Taylor and Francis Group, 2007	
3. Florea	no D. and Mattiussi C., "Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies",	
MIT Pres	ss, Cambridge, MA, 2008.	
	Y.Zomaya, "Handbook of Nature-Inspired and Innovative Computing", Springer, 2006.	
	Dorrigo, Thomas Stutzle," Ant Colony Optimization", PHI,2005	
J. Iviarco	Dorngo, momas stutzic, Ant Colony Optimization, PHI,2003	

KDS078	B Deep Learning	
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)
	At the end of course , the student will be able :	1
CO 1	To present the mathematical, statistical and computational challenges of building neural networks	K_1, K_2
CO 2	To study the concepts of deep learning	K_1, K_2
CO 3	To introduce dimensionality reduction techniques	K ₂
CO 4	To enable the students to know deep learning techniques to support real-time applications	K ₂ , K ₃
CO 5	To examine the case studies of deep learning techniques	K _{3,} K ₆
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	INTRODUCTION : Introduction to machine learning- Linear models (SVMs and Perceptrons, logistic regression)- Intro to Neural Nets: What a shallow network computes- Training a network: loss functions, back propagation and stochastic gradient descent- Neural networks as universal function approximates	08
П	DEEP NETWORKS : History of Deep Learning- A Probabilistic Theory of Deep Learning- Backpropagation and regularization, batch normalization- VC Dimension and Neural Nets-Deep Vs Shallow Networks-Convolutional Networks- Generative Adversarial Networks (GAN), Semi- supervised Learning	08
III	DIMENTIONALITY REDUCTION 9 Linear (PCA, LDA) and manifolds, metric learning - Auto encoders and dimensionality reduction in networks - Introduction to Convnet - Architectures – AlexNet, VGG, Inception, ResNet - Training a Convnet: weights initialization, batch normalization, hyperparameter optimization	08
IV	OPTIMIZATION AND GENERALIZATION : Optimization in deep learning– Non-convex optimization for deep networks- Stochastic Optimization Generalization in neural networks- Spatial Transformer Networks- Recurrent networks, LSTM - Recurrent Neural Network Language Models- Word-Level RNNs & Deep Reinforcement Learning - Computational & Artificial Neuroscience	08
V	CASE STUDY AND APPLICATIONS : Imagenet- Detection-Audio WaveNet-Natural Language Processing Word2Vec - Joint Detection-Bioinformatics- Face Recognition- Scene Understanding- Gathering Image Captions	08
Text boo	ks:	1
1. Cosma	Rohilla Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015.	
	& Yu, Deep Learning: Methods and Applications, Now Publishers, 2013.	
3. Ian Go	odfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016.	
4. Micha	el Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.	
Mapping	g with MOOCS:	
	nlinecourses.nptel.ac.in/noc18_cs41/preview	

KDS079	Service Oriented Architecture	
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)
	At the end of course , the student will be able :	
CO 1	Comprehend the need for SOA and its systematic evolution.	K1,K2
CO 2	Apply SOA technologies to enterprise domain.	K3
CO 3	Design and analyze various SOA patterns and techniques.	K4
CO 4	Compare and evaluate best strategies and practices of SOA.	K2
CO 5	Understand the business case for SOA	K1
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I F	ntroduction: SOA and MSA Basics: Service Orientation in Daily Life, Evolution of SOA and MSA. Serviceoriented Architecture and Microservices architecture – Drivers for SOA, Dimensions f SOA, Conceptual Model of SOA, Standards and Guidelines for SOA, Emergence of MSA. Enterprise-Wide SOA: Considerations for Enterprise-wide SOA, Strawman Architecture for Enterprise-wide SOA, Enterprise SOA Reference Architecture, Object-oriented Analysis and Design (OOAD) Process, Service-oriented Analysis and Design (SOAD) Process, SOA	08
II S N	Gervice-Oriented Applications: Considerations for Service-oriented Applications, Patterns for BOA, Pattern-based Architecture for Service-oriented Applications, Composite Applications, Composite Application Programming Model. Gervice-Oriented Analysis and Design: Need for Models, Principles of Service Design, Nonfunctional Properties for Services, Design of Activity Services (or Business Services), Design of Data Services, Design of Client Services, Design of Business Process Services.	08
III III S	Cechnologies for SOA: Technologies for Service Enablement, Technologies for Service Integration, Technologies for Service Orchestration. COA Governance and Implementation: Strategic Architecture Governance, Service Design-time Governance, Service Run-time Governance, Approach for Enterprise-wide SOA Implementation.	08
IV S E	Big Data and SOA: Concepts, Big Data and its characteristics, Technologies for Big Data, dervice-orientation for Big Data Solutions. Business Case for SOA: Stakeholder Objectives, Benefits of SOA, Cost Savings, Return on nvestment (ROI), Build a Case for SOA	08
V C	CA Best Practices: SOA Strategy – Best Practices, SOA Development – Best Practices, SOA Governance – Best Practices. CA and SOA for Business and IT Alignment: Enterprise Architecture, Need for Business and It Alignment, EA and SOA for Business and It Alignment	08
and Mobil	ambhampaty; Service - Oriented Architecture & Microservices Architecture: For Enterprise, Clou e; Wiley; 3rd Edition; 2018; ISBN: 9788126564064. p International; The 2018-2023 World Outlook for Service-Oriented Architecture (SOA) Software a	

ICON Group International; 1st Edition, 2017; ASIN: B06WGPN8YD.

Thomas Erl; Service Oriented Architecture Concepts Technology & Design; Pearson Education Limited; 2015; ISBN-13: 9788131714904.

Guido Schmutz, Peter Welkenbach, Daniel Liebhart; Service Oriented Architecture An Integration Blueprint; Shroff Publishers & Distributors; 2010; ISBN-13: 9789350231081

KCS71) Quantum Computing	
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)
	At the end of course , the student will be able to understand	
CO 1	Distinguish problems of different computational complexity and explain why certain problems are rendered tractable by quantum computation with reference to the relevant concepts in quantum theory.	K ₁ , K ₂
CO 2	Demonstrate an understanding of a quantum computing algorithm by simulating it on a classical computer, and state some of the practical challenges in building a quantum computer.	K ₂ , K ₃
CO 3	Contribute to a medium-scale application program as part of a co-operative team, making use of appropriate collaborative development tools (such as version control systems).	K ₂ , K ₃
CO 4	Produce code and documentation that is comprehensible to a group of different programmers and present the theoretical background and results of a project in written and verbal form.	K ₃ , K ₄
CO 5	Apply knowledge, skills, and understanding in executing a defined project of research, development, or investigation and in identifying and implementing relevant outcomes.	K _{3,} K ₆
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
Ι	Fundamental Concepts: Global Perspectives, Quantum Bits, Quantum Computation, Quantum Algorithms, Quantum Information, Postulates of Quantum Mechanisms.	08
П	Quantum Computation : Quantum Circuits – Quantum algorithms, Single Orbit operations, Control Operations, Measurement, Universal Quantum Gates, Simulation of Quantum Systems, Quantum Fourier transform, Phase estimation, Applications, Quantum search algorithms – Quantum counting – Speeding up the solution of NP – complete problems – Quantum Search for an unstructured database.	08
ш	Quantum Computers: Guiding Principles, Conditions for Quantum Computation, Harmonic Oscillator Quantum Computer, Optical Photon Quantum Computer – Optical cavity Quantum electrodynamics, Ion traps, Nuclear Magnetic resonance	08
IV	Quantum Information: Quantum noise and Quantum Operations – Classical Noise and Markov Processes, Quantum Operations, Examples of Quantum noise and Quantum Operations – Applications of Quantum operations, Limitations of the Quantum operations formalism, Distance Measures for Quantum information.	08
V	Quantum Error Correction: Introduction, Shor code, Theory of Quantum Error –Correction, Constructing Quantum Codes, Stabilizer codes, Fault – Tolerant Quantum Computation, Entropy and information – Shannon Entropy, Basic properties of Entropy, Von Neumann, Strong Sub Additivity, Data Compression, Entanglement as a physical resource.	08
Text boo		
	al A. Nielsen. &Issac L. Chiang, "Quantum Computation and Quantum Information", Cambridge	e University
· · · ·	nt South Asian edition, 2002.	Engineering
	or G. Rieffel, Wolfgang H. Polak, "Quantum Computing - A Gentle Introduction" (Scientific and tion) Paperback – Import,	Engineering
-	14 3. Computing since Democritus by Scott Aaronson	
	puter Science: An Introduction by N. DavidMermin 5. Yanofsky's and Mannucci, Quantum Co	mputing for
	r Scientists.	T

KCS71	1 Mobile Computing	
	Course Outcome (CO) Bloom's Knowledge Lev	el (KL)
	At the end of course, the student will be able to understand	
CO 1	Explain and discuss issues in mobile computing and illustrate overview of wireless telephony and channel allocation in cellular systems.	I K1, K4
CO 2	Explore the concept of Wireless Networking and Wireless LAN.	K1
CO 3	Analyse and comprehend Data management issues like data replication for mobile computers adaptive clustering for mobile wireless networks and Disconnected operations.	, K4
CO 4	Identify Mobile computing Agents and state the issues pertaining to security and fault tolerance in mobile computing environment.	K1, K2
CO 5	Compare and contrast various routing protocols and will identify and interpret the performance of network systems using Adhoc networks.	f K2
	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed Lecture
I	Introduction, issues in mobile computing, overview of wireless telephony: cellular concept, GSM: air-interface, channel structure, location management: HLR-VLR, hierarchical, handoffs, channel allocation in cellular systems, CDMA, GPRS.	08
Π	Wireless Networking, Wireless LAN Overview: MAC issues, IEEE 802.11, Blue Tooth, Wireless multiple access protocols, TCP over wireless, Wireless applications, data broadcasting, Mobile IP, WAP: Architecture, protocol stack, application environment, applications.	08
III	Data management issues, data replication for mobile computers, adaptive clustering for mobile wireless networks, File system, Disconnected operations.	08
IV	Mobile Agents computing, security and fault tolerance, transaction processing in mobile computing environment.	08
V	Ad Hoc networks, localization, MAC issues, Routing protocols, global state routing (GSR), Destination sequenced distance vector routing (DSDV), Dynamic source routing (DSR), Ad Hoc on demand distance vector routing (AODV), Temporary ordered routing algorithm (TORA), QoS in Ad Hoc Networks, applications.	08
Text bo		
	1. J. Schiller, Mobile Communications, Addison Wesley.	
	2. A. Mehrotra, GSM System Engineering.	
	3. M. V. D. Heijden, M. Taylor, Understanding WAP, Artech House.	
	4. Charles Perkins, Mobile IP, Addison Wesley.	
	5. Charles Perkins, Ad hoc Networks, Addison Wesley.	

KCS712	2 Internet of Things			
	Course Outcome (CO) Bloom's Knowledge L	evel (KL)		
	At the end of course, the student will be able to understand			
CO 1	Demonstrate basic concepts, principles and challenges in IoT.	K1,K2		
CO 2	Illustrate functioning of hardware devices and sensors used for IoT.	K2		
CO 3	Analyze network communication aspects and protocols used in IoT.			
CO 4	Apply IoT for developing real life applications using Ardunio programming.			
CP 5	To develop IoT infrastructure for popular applications			
	DETAILED SYLLABUS	3-1-0		
Unit	Торіс	Proposed Lecture		
Ι	Internet of Things (IoT): Vision, Definition, Conceptual Framework, Architectural view, technology behind IoT, Sources of the IoT, M2M Communication, IoT Examples. Design Principles for Connected Devices: IoT/M2M systems layers and design standardization, communication technologies, data enrichment and consolidation, ease of designing and affordability			
II	Hardware for IoT: Sensors, Digital sensors, actuators, radio frequency identification (RFID) technology, wireless sensor networks, participatory sensing technology. Embedded Platforms for IoT: Embedded computing basics, Overview of IOT supported Hardware platforms such as Arduino, NetArduino, Raspberry pi, Beagle Bone, Intel Galileo boards and ARM cortex.			
Ш	Network & Communication aspects in IoT: Wireless Medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination			
IV	Programming the Ardunio: Ardunio Platform Boards Anatomy, Ardunio IDE, coding, using emulator, using libraries, additions in ardunio, programming the ardunio for IoT.			
V	Challenges in IoT Design challenges: Development Challenges, Security Challenges, Other challenges IoT Applications: Smart Metering, E-health, City Automation, Automotive Applications, home automation, smart cards, communicating data with H/W units, mobiles, tablets Designing of smart street lights in smart city.	e 08		
Text boo		1		
2. Jeeva	er Hersent,DavidBoswarthick, Omar Elloumi"The Internet of Things key applications and protocols' Jose, Internet of Things, Khanna Publishing House and Miller "The Internet of Things" by Pearson	", willey		
4. Raj Ka 5. Arshde	amal "INTERNET OF THINGS", McGraw-Hill, 1ST Edition, 2016 eepBahga, Vijay Madisetti "Internet of Things (A hands on approach)" 1ST edition, VPI publication McEwen,Hakin Cassimally "Designing the Internet of Things" Wiley India	ns,2014		

KCS713				
	Course Outcome (CO) Bloom's Knowledge Lev	vel (KL)		
00.1	At the end of course , the student will be able to understand	K ₃		
CO 1	Describe architecture and underlying principles of cloud computing.	K ₃ K ₃ , K ₄		
CO 2	CO 2 Explain need, types and tools of Virtualization for cloud.			
CO 3	Describe Services Oriented Architecture and various types of cloud services.	K ₂ , K ₃		
CO 4	Explain Inter cloud resources management cloud storage services and their providers Assess security services and standards for cloud computing.	K ₂ , K ₄		
CO 5	Analyze advanced cloud technologies.	K ₃ , K ₆		
	DETAILED SYLLABUS	3-1-0		
Unit	Торіс	Proposed Lecture		
I	Introduction To Cloud Computing: Definition of Cloud – Evolution of Cloud Computing – Underlying Principles of Parallel and Distributed Computing – Cloud Characteristics – Elasticity in Cloud – On-demand Provisioning.			
II Cloud Enabling Technologies Service Oriented Architecture: REST and Systems of Systems – Web Services – Publish, Subscribe Model – Basics of Virtualization – Types of Virtualization – Implementation Levels of Virtualization – Virtualization Structures – Tools and Mechanisms – Virtualization of CPU – Memory – I/O Devices –Virtualization Support and Disaster Recovery.				
ш	Cloud Architecture, Services And Storage: Layered Cloud Architecture Design – NIST CloudComputing Reference Architecture – Public, Private and Hybrid Clouds – laaS – PaaS – SaaS –Architectural Design Challenges – Cloud Storage – Storage-as-a-Service – Advantages of CloudStorage – Cloud Storage Providers – S3.			
IV	Resource Management And Security In Cloud: Inter Cloud Resource Management – Resource Provisioning and Resource Provisioning Methods – Global Exchange of Cloud Resources – Security Overview – Cloud Security Challenges – Software-as-a-Service Security – Security Governance – Virtual Machine Security – IAM – Security Standards.			
V	Cloud Technologies And Advancements Hadoop: MapReduce – Virtual Box — Google App Engine – Programming Environment for Google App Engine — Open Stack – Federation in the Cloud – Four Levels of Federation – Federated Services and Applications – Future of Federation.			
Internet of 2. Rittin CRC Pre 3. Rajku 4. Toby 5. Geor	Iwang, Geoffrey C. Fox, Jack G. Dongarra, "Distributed and Cloud Computing, From Parallel Proces of Things", Morgan Kaufmann Publishers, 2012. Ighouse, John W., and James F. Ransome, —Cloud Computing: Implementation, Management and Se	ecurity, ill, 2013.		

KCS714	Block chain Architecture Design		
	Course Outcome (CO) Bloom's Knowledge Lo		
	At the end of course , the student will be able to		
CO 1	Describe the basic understanding of Blockchain architecture along with its primitive.		
CO 2	Explain the requirements for basic protocol along with scalability aspects.	K ₂ , K ₃	
CO 3	3 Design and deploy the consensus process using frontend and backend.		
CO 4	CO 4 Apply Blockchain techniques for different use cases like Finance, Trade/Supply and Government activities.		
	DETAILED SYLLABUS	3-0-0	
Unit	Торіс	Proposed Lecture	
Ι	Introduction to Blockchain: Digital Money to Distributed Ledgers , Design Primitives: Protocols, Security, Consensus, Permissions, Privacy.Blockchain Architecture and Design: Basic crypto primitives: Hash, Signature,) Hashchain to Blockchain, Basic consensus mechanisms		
Π	Consensus: Requirements for the consensus protocols, Proof of Work (PoW), Scalability aspects of Blockchain consensus protocols Permissioned Blockchains:Design goals, Consensus protocols for Permissioned Blockchains		
Ш	Hyperledger Fabric (A): Decomposing the consensus process , Hyperledger fabric components, Chaincode Design and Implementation Hyperledger Fabric (B): Beyond Chaincode: fabric SDK and Front End (b) Hyperledger composer tool		
IV	Use case 1 : Blockchain in Financial Software and Systems (FSS): (i) Settlements, (ii) KYC, (iii) Capital markets, (iv) Insurance Use case 2: Blockchain in trade/supply chain: (i) Provenance of goods, visibility, trade/supply chain finance, invoice management discounting, etc		
V	Use case 3: Blockchain for Government: (i) Digital identity, land records and other kinds of record keeping between government entities, (ii) public distribution system social welfare systems Blockchain Cryptography, Privacy and Security on Blockchain		
Fext boo		1	
	Astering Bitcoin: Unlocking Digital Cryptocurrencies, by Andreas Antonopoulos		
	Blockchain by Melanie Swa, O'Reilly		
4. Z	Hyperledger Fabric - https://www.hyperledger.org/projects/fabric Zero to Blockchain - An IBM Redbooks course, by Bob Dill, David https://www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/crse0401.html	Smits	

KCS354/KCS752Mini Project or Internship Assessment				
Course Outcome (CO) Bloom's Knowledge Lev		el (KL)		
	At the end of course , the student will be able to understand			
CO 1	Developing a technical artifact requiring new technical skills and effectively utilizing a new software tool to complete a task	K ₄ , K ₅		
CO 2	Writing requirements documentation, Selecting appropriate technologies, identifying and creating appropriate test cases for systems.			
CO 3	O 3 Demonstrating understanding of professional customs & practices and working with professional standards.			
CO 4	4 Improving problem-solving, critical thinking skills and report writing.			
CO 5	CO 5 Learning professional skills like exercising leadership, behaving professionally, behaving ethically, listening effectively, participating as a member of a team, developing appropriate workplace attitudes.			

KCS 753/	KCS851 Projec	t		
Course Outcome (CO) Bloom's Knowledge Lev			vel (KL)	
	At the end of course , the student wil	l be able to understand		
CO 1	Analyze and understand the real life problem and app solution.	e and understand the real life problem and apply their knowledge to get programming		
CO 2		in the creative design process through the integration and application of diverse al knowledge and expertise to meet customer needs and address social issues.		
CO 3	Use the various tools and techniques, coding practices for developing real life solution to the problem.		K_5, K_6	
CO 4	CO 4 Find out the errors in software solutions and establishing the process to design maintainable software applications		K_4, K_5	
CO 5	Write the report about what they are doing in project and learning the team working skills		K _{5,} K ₆	